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The translational motion of a solid sphere near a deformable fluid interface is studied in the low Reynolds
number regime. In this problem, the fluid flow driven by the sphere is dynamically coupled to the instantaneous
conformation of the interface. Using a two-dimensional Fourier transform technique, we are able to account for
the multiple backflows scattered from the interface. The correction to the mobility tensor is then obtained from
the matrix elements of the relevant Green’s function. Our perturbative analysis allows us to express the explicit
position and frequency dependence of the mobility for small particles. We recover in the steady limit the result
for a sphere near a perfectly flat interface. At intermediate time scales, the mobility exhibits an imaginary part
which is a signature of the elastic response of the interface. In the short time limit, we find that the perpen-
dicular mobility may, under some circumstances, become lower than the bulk value. All the results can be
explained using the definition of the relaxation time of the soft interface.
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I. INTRODUCTION

The motion of a particle in the vicinity of a bounding
surface is a long standing problem in colloidal science �1�.
When a colloidal sphere suspended in a quiescent fluid ap-
proaches a wall, the drag force acting on it increases with
respect to the drag force when far from the wall. This prop-
erty is attributed to hydrodynamic interactions that develop
because of the boundary conditions imposed by the wall on
the fluid flow. In addition, the motion of the particle becomes
anisotropic since the mobility is higher in the direction par-
allel to the wall than in the perpendicular direction.

Although the first investigations on the influence of a
bounding wall date back to the early work of Lorentz �2�,
this field has known a certain revival during the past two
decades. The main reason for this is certainly the achieve-
ment of technical progress, in particular in the field of single-
molecule techniques, which allows measurement nowadays
of the position-dependent mobility of individual micrometer-
size particles with great accuracy. Among the most efficient
tools, one can quote the evanescent wave techniques �3,4�,
single-particle tracking by videomicroscopy �5�, particle han-
dling with optical tweezers �6–8�, atomic force microscope
noise analysis �9�, or fluorescent correlation spectroscopy
�10�. Those various methods share the common feature of
probing the random motion of Brownian objects near one or
two solid walls. The mobility coefficients deduced from the
experimental data agree remarkably well with theoretical
predictions �1�.

The renewal of interest in this question is also due to the
development of microfluidics �11�. Indeed, by reducing the
size of the systems, the influence of surface effects is inevi-
tably enhanced with respect to bulk properties. Conse-
quently, most of the physical phenomena take place near the
boundaries. A fundamental understanding of how surface
properties might affect the overall flow field has therefore
become crucial in order to propose new solutions that would

take advantage of this predominance. Lastly, colloidal par-
ticles have been suggested recently as local probes of the
flow properties near surfaces. This idea has been introduced
in the context of the no-slip boundary condition �12�, where
the motion of the particles is expected to contain a signature
of the slip length �10,13�. More generally, one can think of a
Brownian particle as a probe of the viscoelastic properties of
the bounding surface.

From a theoretical viewpoint, the motion of a solid par-
ticle in the presence of a nearby plane interface has been
extensively studied in the past. During the last few years,
calculations of mobility coefficients have been extended to
particles near surfactant-covered interfaces �14�, in a liquid
film between two fluids �15�, or in a Poiseuille flow between
planar walls �16�. The effect of fluid inertia has also been
accounted for �17�, as well as the possibility of liquid slip-
page at the wall �13�. Here, we reexamine this question for a
particle near a fluid-fluid interface. Perturbative results are
available for the drag force acting on a small sphere of radius
a moving at a distance z0 of a perfectly flat interface, up to
second order in the small parameter a /z0 �18�. While this
problem is of some intrinsic interest, and is a logical starting
point in the limit of very high surface tension, it is obvious
that a real interface will generally deform owing to the mo-
tion of the particle. For finite surface tension, the motion of
the particle is expected to be dynamically coupled to the
conformations of the interface. Indeed, the fluid flow caused
by the displacement of the particle exerts stresses that de-
form the interface. Relaxing back to its equilibrium position,
the interface creates a backflow that in turn perturbs the mo-
tion of the particle, and so on. The delay in the response of
the soft surface to hydrodynamic stresses is therefore ex-
pected to induce memory effects in the motion of the particle
�19�.

In general, the problem of the motion near a soft surface
is highly nonlinear due to the fact that the shape of the in-
terface is unknown. Although it cannot be solved exactly,
iterative solutions have been derived when the deformation
of the interface is asymptotically small �20,21�. The idea is to
first solve the motion of a spherical bead near a flat surface.
As the resulting velocity produces an imbalance of normal*Electronic address: th.bickel@cpmoh.u-bordeaux1.fr
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stress at the interface, it is then possible to determine a first
nonzero approximation for the deformation �20�. This strat-
egy is, however, limited as it describes only the first “image”
correction to hydrodynamic interactions. Also, it assumes a
quasi-steady deformation profile and does not allow for a
possible delay inherent in the response of an elastic interface.

In this paper, we present an analytical method that rigor-
ously accounts for the infinite series of hydrodynamic reflec-
tions on the soft interface. This scheme is achieved within
the only assumption that interface deformations remain mod-
erate. The analysis extends a recent study of the author on
fluid membranes to more general liquid-liquid interfaces
�19�. Although both questions share some similarities, the
relaxation dynamics of liquid interfaces differs from that of
fluid membranes. Also, the issue of a liquid interface is more
involved because of the additional conditions that have to be
enforced at the boundary. The aim of this paper is to present
a detailed study of the hydrodynamic coupling between the
particle and the conformations of the interface. The remain-
ing of the paper is organized as follows. In Sec. II, we
specify the system and introduce the general set of equations
that govern the problem. Results for the Green’s function and
the mobility coefficients are then discussed in Sec. III. In
particular, it is found that the frequency-dependent mobility
switches between two regimes over a time scale correspond-
ing to the relaxation time of the interface. Finally, we come
back to the relationship with experiments and draw some
concluding remarks in Sec. IV, the details of the calculations
being kept for the Appendixes.

II. FORMULATION OF THE PROBLEM

A. Linear hydrodynamics

We consider a spherical particle of radius a moving near a
fluid interface in the low Reynolds number regime. The in-
terface separates two viscous, incompressible, and immis-
cible fluids. Its average position is chosen to coincide with
the x-y plane, with the z coordinate directed perpendicular to
it. The two fluids are labeled with indices 1 and 2, fluid 1
lying above fluid 2. Furthermore, we denote by �1 and �2 the
shear viscosities, by �1 and �2 the mass densities, and by
��=�2−�1�0 the mass density difference. In order to get
the mobility tensor of the particle, we shall first evaluate the
appropriate Green’s function and investigate the effect of a
time-dependent point force F�t� acting at position r0

= �x0 ,y0 ,z0� on the flow field �22�. Without loss of generality,
we can assume that the sphere is fully immersed in fluid 1.
For small-amplitude and low-frequency motion, the flow ve-
locity v�r , t� and the pressure p�r , t� are governed by the
Stokes equations

���2v − �p + F��r − r0� = 0 , �1�

� · v = 0, �2�

with �=1 or 2, depending on whether the point r is located
above or below the interface. In Eq. �1�, � stands for the
Dirac delta function. The two fluids are assumed to be qui-
escent except for the disturbance flow caused by the motion
of the sphere.

B. Physics of interfaces

The Stokes equations have to be solved together with the
usual boundary conditions at the interface, namely, the ve-
locity and the tangential constraints must be continuous. The
normal-normal component of the stress tensor presents a dis-
continuity which is balanced by the restoring force exerted
by the deformed interface on the fluid �i.e., the Laplace pres-
sure�. This question is quite involved since, in principle, the
tangential and normal directions depend on the local and
instantaneous conformation of the interface. However, an ap-
proximate solution can be found for moderate deformations.
In this case, the position of the almost flat interface can be
described by a single-valued function h�� , t�, with �= �x ,y�.
For our purpose, it is more convenient to use the two-
dimensional Fourier representation

h�q,t� =� d2� exp�− iq · ��h��,t� , �3�

with q= �qx ,qy�. The elastic properties of the interface are
then described by the Hamiltonian �23�

H =
�

2
� d2q�q2 + lc

−2��h�q,t��2, �4�

where � is the surface tension and lc=�� / �g��� the capillary
length, g being the gravitational acceleration. The capillary
length typically lies in the millimeter range for �
�100 mN/m, but can be as low as a few micrometers for
ultrasoft interfaces with ��0.1 	N/m �24�. We then pro-
ceed in the same manner as for the linearized theory of cap-
illary waves and express all the boundary conditions at the
undisplaced interface z=0. This hypothesis of smooth defor-
mation is valid up to linear order in the deformation field h,
so that our approach is fully consistent with the harmonic
description of the interface energy Eq. �4�.

C. Method of solution

In spite of these classical simplifications, the coupling be-
tween the motion of the particle and the capillary waves
leads to a rich behavior. Before solving the Stokes equations,
we first remark that the shape of the interface depends on the
detailed history of the motion of the particle as well as on the
shape at some earlier times. We are then naturally led to
perform a Fourier mode analysis in time, the Fourier trans-

form f̃�
� of an arbitrary function f�t� being defined as

f̃�
� = �
−�

+�

dt exp�− i
t�f�t� . �5�

In addition, one can note that the problem is translationally
invariant along the direction parallel to the surface. It is thus
helpful to use the two-dimensional Fourier representation in-
troduced above in Eq. �3� �1,25�. It also appears judicious for
this study to define a new orthogonal coordinate system that
would account for the symmetries of the system. To this aim,
the vector fields are decomposed into their longitudinal,
transverse, and normal components �16,26,27�. This defines
a new set of orthogonal unit vectors �q̂ , t̂ , n̂�, where q̂ is the
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unit vector parallel to q, n̂ the unit vector in the z direction,
and t̂ the in-plane vector perpendicular to q̂ and n̂. These
vectors are expressed in the Cartesian basis �ex ,ey ,ez� as

q̂ =
qx

q
ex +

qy

q
ey ,

t̂ =
qy

q
ex −

qx

q
ey ,

n̂ = ez. �6�

The velocity and the force are written as v=vlq̂+vtt̂+vzn̂
and F=Flq̂+Ftt̂+Fzn̂, respectively. Inserting these represen-
tations into the Stokes equations �1� and �2� finally leads to a
system of ordinary differential equations for the Fourier-
transformed quantities,

− ��q2ṽl + ��

�2ṽl

�z2 − iqp̃ + F̃l��z − z0� = 0, �7�

− ��q2ṽt + ��

�2ṽt

�z2 + F̃t��z − z0� = 0, �8�

− ��q2ṽz + ��

�2ṽz

�z2 −
�p̃

�z
+ F̃z��z − z0� = 0, �9�

with the divergenceless condition

iqṽl +
�ṽz

�z
= 0. �10�

Although this framework is not as transparent as the usual
image method, its advantages are twofold. On the one hand,
it is particularly well suited to accommodate the description
of the interface energy in Fourier space, since it thoroughly
accounts for the symmetries of the problem. On the other
hand, the transverse component of the velocity is decoupled
from the longitudinal and normal directions. Moreover, rela-
tion �10� provides a useful link between ṽl and ṽz, so that it
is not difficult to get a single, fourth-order differential equa-
tion for the normal component only,

�4ṽz

�z4 − 2q2�2ṽz

�z2 + q4ṽz =
q2F̃z

�1
��z − z0� +

iqF̃l

�1
���z − z0� .

�11�

Here, �� is the derivative of the delta function.

D. Boundary conditions

To describe the flow in the presence of an interface, we
must consider the flow on each side separately, and then
require proper matching conditions for the velocity and sur-
face forces. The hypothesis of smooth deformations around
the planar configuration enables us to reformulate the prob-
lem in terms of equivalent boundary conditions at the undis-
placed interface z=0 �20�. The appropriate conditions are �i�
the continuity of the velocity, �ii� the continuity of tangential

constraints, and �iii� the discontinuity of normal forces. Be-
cause the representation of the velocity in terms of longitu-
dinal and transverse coordinates is not commonly used in the
literature, we find it worthwhile to give in Appendix A some
details regarding the derivation of the boundary values.

We finally assume that the two fluids are immiscible, a
condition that is also enforced at height z=0. This approxi-
mation is justified since the fact that it is at any rigor valid at
z=h is an effect of higher order. Within this assumption, the
time rate of change of the shape function is related to the
normal velocity at the interface through

ṽz�q,0,
� = i
h̃�q,
� , �12�

up to linear order in the deformation field. This closure rela-
tion is especially relevant since, as shown in the following, it
allows us to work out the instantaneous deformation of the
interface in response to hydrodynamic stresses.

III. GREEN’S FUNCTION AND TRANSLATIONAL
MOBILITY

A. Motion of the interface

We now have all the ingredients to solve the Stokes equa-
tions. Because the calculations are algebraically involved, we
save the details for the Appendixes. Because of the linearity
of the problem, the local deformation of the interface is di-
rectly proportional to the amplitude of the point force applied
at height z0,

h̃�q,
� = R̃�q,z0,
� · F̃�
� , �13�

where the vector R̃ is the response function obtained thanks

to the closure relation �12�. For a vertical force F̃
= �0,0 , F̃z�, we find in Appendix B

R̃z�q,z0,
� =
1

4�̄q�
q + i
�
�1 + qz0�e−qz0. �14�

As expected, the relaxation dynamics of the profile is gov-
erned by the mean viscosity �̄= ��1+�2� /2. The response of
a deformation mode with wave vector q is characterized by
its relaxation rate


q =
�

4q�̄
�q2 + lc

−2� . �15�

we remark that different wave vectors are not damped in the
same way. The amplitude of the response function is always

maximum for q=0, h̃�0 ,
�= F̃z / ���g�. It then vanishes with
increasing q, all the more rapidly as the frequency 
 or the

distance z0 becomes large. The real part of R̃z, which is in
phase with the strain, is the analog of a storage modulus for
a viscoelastic medium �28�. This contribution corresponds to
the elastic energy stored in the deformation of the interface.

On the other hand, the imaginary part of R̃z plays the role of
a loss modulus and describes the viscous dissipation associ-
ated with the relaxation of individual deformation modes.

The motion of the interface in real space is readily ob-
tained from the inverse Fourier transform of the response
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function, though the calculations will not be performed here.
A deformation may also be obtained as a result of a point
force applied parallel to the interface. We find

R̃l�q,z0,
� =
1

4�̄q�
 − i
q�
qz0e−qz0, �16�

R̃t�q,z0,
� = 0 �17�

for the longitudinal and transverse coordinates, respectively.
Note that the shape of the interface is not affected by the
transverse component of the force.

B. Green’s function

The components of the Green’s function are then obtained
by identification with the definition

ṽi = 	
j

G̃ijF̃j , �18�

where i , j� 
l , t ,z�. As shown in Appendix B, the Green’s
function can always be written as

G̃�q,z,z0,
� = G̃�0��q,z − z0� + �G̃�q,z,z0,
�

= G̃�0��q,z − z0� + �G̃�1��q,z,z0�

+




 − i
q
�G̃�2��q,z,z0� �19�

see Appendix B 1 for the exact expression of G̃tj, Appendix B

2 for the components G̃zj, and Appendix B 3 for the compo-

nents G̃lj. The first term, which depends only the relative
distance �z−z0�, would reduce to the usual free-space
Green’s function if the viscosities were equal. The second

term, �G̃�1�, is the correction for an undistorted interface.
Both contributions have already been obtained in previous
work, though not in this particular choice of coordinates
�18�. The original part of this study is the derivation of the
contribution coming from the deformation of the interface,
characterized by the prefactor �
− i
q�−1 in Eq. �19�. This is
a clear signature of hydrodynamic interactions with the soft
surface. Note that the correction vanishes for �→�, and one
recovers the results for the flat liquid-liquid interface in the
high surface tension limit.

Finally, once all the components are known in the �q̂ , t̂ , n̂�
basis, it is not difficult to express the Green’s function in
Cartesian coordinates. In particular, the diagonal components
are given by

G̃xx =
qx

2

q2 G̃ll +
qy

2

q2 G̃tt, �20�

G̃yy =
qy

2

q2 G̃ll +
qx

2

q2 G̃tt. �21�

Similar relations can be deduced for off-diagonal terms,
though they will not be required in the following.

C. Translational mobility tensor

From the matrix elements of the Green’s function, we can
obtain the mobility matrix for a sphere. With this aim, we
still have to enforce the no-slip boundary condition for the
fluid flow on the surface of the particle. In the following, we
assume that the particle is a sphere of radius a. If we denote
by U�r0� and �, respectively, the translational and rotational
velocity of the sphere, r0 being the position of its center of
mass, then the fluid velocity satisfies

v�r0 + a� = U�r0� + � � a , �22�

for any vector a scanning the surface of the bead. Integrating
the total force over the surface of the particle together with
the no-slip condition, one obtains a linear relation between
the friction force FH exerted by the liquid and velocity of the
particle �22�. This relation defines the �frequency-dependent�
mobility tensor through Ũ=−	̃F̃H. It can be written as the
sum of two terms 	̃kl�z0 ,
�=	0�kl+�	̃kl�z0 ,
�, with 	0

= �6
�1a�−1 the bulk value for a particle in fluid 1 but infi-
nitely far from the interface. The correction �	̃kl is then
expanded in powers of a /z0. In the limit of small particles
a�z0, the correction to the mobility tensor is given, at lead-
ing order, by

�	̃kl�z0,
� =� d2q

�2
�2�G̃kl�q,z0,z0,
� . �23�

As a matter of fact, all cross contributions vanish because of
reflection symmetry, and the rotational symmetry implies
�	̃xx=�	̃yy. Thus, the correction to the mobility tensor is
also diagonal with elements �	̃xx=�	̃yy =�	̃� and �	̃zz
=�	̃�.

1. Perpendicular mobility

From the result Eq. �B11� for the normal-normal compo-
nent of the Green’s function, we find

�	̃��z0,
� = −
1

16
�1z0

2�1 + 3�2

�1 + �2
� +

5

32
�̄z0

F

�,
z0

lc
� .

�24�

In this expression, �=4�̄lc /� corresponds to the longest time
required for elastic structures in the fluid—in our case, the
interface—to relax. For typical values �̄=10−2 Pa s and ��
=102 kg m−3, it ranges from ��10−3 s for the usual inter-
faces with �=100 mN m−1 up to ��1 s for ultrasoft inter-
faces with �=0.1 	N m−1 �24�. The frequency-dependent
contribution F arises from surface deformations and is there-
fore governed by the mean viscosity �̄. It is given by

F�s,k� =
4

5
�

0

�

dx
iksx

1 + isx + x2 �1 + kx�2 exp�− 2kx�

= F��s,k� + iF��s,k� . �25�

This integral actually corresponds to the sum over all defor-
mation modes of the interface �29�. For 
=0, one has
F�0,z0 / lc�=0 and the knowledgeable reader will recognize
on the right-hand side of Eq. �24� the correction to the mo-

THOMAS BICKEL PHYSICAL REVIEW E 75, 041403 �2007�

041403-4



bility of a sphere near a flat, liquid-liquid interface �18�. One
even recovers the result of Lorentz for a hard wall by taking
the limit �2→� �1�. For finite values of 
, the additional
term is actually a complex number. Its real part F� represents
the contribution to the viscous dissipation that comes from
interface deformations. As shown in Fig. 1, F� is positive for
any value of the parameters, so that the real part of the mo-
bility increases when the constraint on the shape of the in-
terface is released. Viscous dissipation is therefore always
lower for a soft interface, which can bend under hydrody-
namic forces, than for a rigid interface.

Another outcome of Eq. �25� is that the mobility of the
particle also exhibits an imaginary part F�, which corre-
sponds to the storage of elastic energy in the deformation of
the interface. As shown in Fig. 2, F� is nonzero only for
intermediate values of the frequency 
��1. The latter con-
tribution vanishes when 
→� and one gets in this limit

�	̃��z0,
 → �� =
3

16
�1z0

�1 − �2

�1 + �2
� . �26�

Lastly, we remark from Figs. 1 and 2 that both F� and F� are
of O�1� for a wide range of reduced distances z0 / lc. But

because of the prefactor z0
−1 in Eq. �24�, the coupling be-

tween the motion of the particle and the shape of the inter-
face vanishes when the particle is far away from the surface,
as one might expect.

2. Parallel mobility

Similar conclusions can be drawn for the mobility parallel
to the surface. Explicitly, we find

�	̃��z0,
� =
1

32
�1z0

2�1 − 3�2

�1 + �2
� +

1

64
�̄z0

G

�,
z0

lc
� ,

�27�

where the frequency-dependent contribution is given by

G�s,k� = 4�
0

�

dx
iksx

1 + isx + x2k2x2 exp�− 2kx� . �28�

In particular, one recovers the mobility coefficient for a
sphere near a rigid interface in the asymptotic limit 
��1,

�	̃��z0,
 = 0� =
1

32
�1z0

2�1 − 3�2

�1 + �2
� , �29�

whereas one obtains in the other limit 
��1,

�	̃��z0,
 → �� =
3

32
�1z0

�1 − �2

�1 + �2
� . �30�

3. Interpretation of the results

Equations �24�, �25�, �27�, and �28� are the main outcome
of this paper and deserve a few comments. With this aim, let
us focus on the relaxation time of the interface, �=4�̄lc /�
�1/��. As recently suggested in the context of fluid mem-
branes �19�, the asymptotic behaviors of the mobility coeffi-
cient can be understood from this definition.

�1� It can be readily noticed that the limit 
��1 actually
coincides with the limit �→�. At very low frequencies, the
interface thus appears infinitely rigid and one therefore re-
covers the well-known mobility coefficient of a particle near
a flat, liquid-liquid interface �18�.

�2� A similar reasoning applies to the limit 
��1. For
high frequency oscillations, the particle experiences an inter-
face between two liquids with vanishing surface tension. As
a consequence, the corrections have to cancel out if
�1=�2—see Eqs. �26� and �30�.

The asymptotic behaviors of F� directly follow from these
two points. Regarding F�, it is clear that elastic deformation
energy can be stored neither in an infinitely rigid interface
��→��, nor in an infinitely soft interface ��→0�. This ex-
plains why this contribution vanishes at both low and high
frequency.

Finally, notice that the sign of the real part of �	̃� may
change depending on whether 
��1 or 
��1. Indeed, it is
always negative at low frequencies, whereas it may be posi-
tive at high frequencies provided that �1��2. This behavior
is unusual since the presence of a surface generally hinders
the perpendicular motion of a particle. This property, pecu-
liar to soft interfaces, may strongly influence the dynamic
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FIG. 1. �Color online� Real part F� as a function of the reduced
frequency s=
�, for different values of the reduced distance k
=z0 / lc. The position of the crossover between the two regimes 
�
�1 and 
��1 is quite sensitive to the distance to the interface.
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FIG. 2. �Color online� Imaginary part F� as a function of the
reduced frequency s=
�, for different values of the reduced dis-
tance k=z0 / lc. The elastic coupling is maximum around the value

��1.
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properties of Brownian particles since surface deformation
may enhance diffusion—with regard to the bulk value—at
short times.

IV. DISCUSSION

To summarize, we have calculated the mobility tensor of a
spherical particle moving close to a fluid-fluid interface. Sev-
eral lengths are inherent in the system, namely, the radius a
of the particle, the distance from the wall, z0, and the capil-
lary length lc. The results presented in this work concern the
response to a point force and are valid for particles far from
the interface, a�z0, and for small amplitude of the particle
oscillations. Because a soft interface can deform and store
elastic energy, the mobility tensor decomposes into a real and
an imaginary part. In the steady-state limit 
��1, deforma-
tions are irrelevant and one recovers the classical result for a
flat, fluid-fluid interface. On the other hand, the short-time
limit 
��1 presents the intriguing feature that the perpen-
dicular mobility can be higher than the bulk mobility if �1
��2. Yet this result does not break any fundamental law
since it arises from the fact that the particle experiences the
other side of the interface, which has a lower shear viscosity.
Finally, coming back to the time variable, the friction force
experienced by the particle will be expressed as a convolu-
tion product and is therefore nonlocal in time. Solvent back-
flow and delay of the response of the elastic interface then
induce memory effects in the motion of the particle.

The framework developed in this study may be adapted to
various problems near soft interfaces. For instance, one
might investigate surface-mediated contributions to the
coupled diffusion of two particles. One can also consider
more complex surfaces, such as surfactant-covered interfaces
or fluid membranes. Predictions regarding the rotational mo-
bility might be relevant for experiments as well, especially in
the case of anisotropic particles. Note that translational and
rotational motions are not coupled for a sphere in the linear-
ized theory. This might no longer be true for large deforma-
tions, where nonlinear effects come into play �30�.

Another point that might be included in the theory is the
effect of fluid inertia. This contribution has been neglected so
far, though it becomes relevant at frequencies higher than

c=� / ��a2�. For typical values �=10−3 Pa s, �
=103 kg m−3, and a=1 	m, we obtain 
c�106 rad s−1.
Here, however, we consider time scales comparable to the
relaxation time of the interface. This corresponds to frequen-
cies in the kilohertz range, so that our approximation is fully
justified. At this point, it should be mentioned that a study
similar to ours, including fluid inertia, has recently been pub-
lished �31�. The author considers an interface with nonzero
dilatational and shear moduli ES and GS, and obtains in the
steady limit the result for a rigid wall with stick boundary
conditions. The origin of this discrepancy is likely due to the
fact that we consider a system with ES=GS=0, but a closer
inspection would be required to elucidate this question.

Finally, let us briefly comment on some possible compari-
sons with experiments. Recently, de Villeneuve et al. consid-
ered the sedimentation of polymethyl methacrylate spheres
toward an interface with ultralow tension ��0.1 	N/m

�32�. In this regime, long-range hydrodynamic interactions
are dominant and lubrication theory does not apply. The au-
thors clearly observe strong deformations of the interface, of
the order of several micrometers for spheres with radius a
=15 	m �32�. Moreover, they measure sedimentation veloci-
ties that do not follow the theoretical curves for an undis-
torted interface, the particles falling faster toward the soft
interface. The interpretation of those results might be quite
straightforward in the light of the present analysis, even
though the nonlinear equations of motion might be challeng-
ing to solve. Work on this question is currently under
progress.
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APPENDIX A: BOUNDARY CONDITIONS

We give in this appendix some details regarding the deri-
vation of the boundary values, expressed at the undisplaced
interface z=0.

1. Continuity of the velocity

First of all, we have to ensure that the velocity is continu-
ous at the interface. Explicitly, this requirement reads

ṽl�q,0+,
� = ṽl�q,0−,
� , �A1�

ṽt�q,0+,
� = ṽt�q,0−,
� , �A2�

ṽz�q,0+,
� = ṽz�q,0−,
� . �A3�

Interestingly, the condition �A1� for the longitudinal coordi-
nate together with the incompressibility condition �10� im-
plies an additional boundary condition for the normal coor-
dinate of the velocity, namely,

� �ṽz

�z
�

0+
= � �ṽz

�z
�

0−
. �A4�

2. Balance of tangential forces

Secondly, tangential stresses have to be balanced at the
interface. In real space, the continuity condition for the
normal-tangential components of the stress tensor reads
��zx�0+ = ��zx�0− and ��zy�0+ = ��zy�0−, with � jk=−p� jk

+����v j /�xk+�vk /�xj� the stress tensor in Cartesian coordi-
nates. Switching to 
q ,z ,
� variables, both requirements re-
duce to

�1�
 �ṽ�

�z
+ iqṽz��

0+
= �2�
 �ṽ�

�z
+ iqṽz��

0−
,

where the two-dimensional vector ṽ� = �ṽl , ṽt� is the parallel
velocity. Projecting this equation onto the transverse direc-
tion leads to the condition
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�1� �ṽt

�z
�

0+
= �2� �ṽt

�z
�

0−
, �A5�

whereas projection onto the longitudinal coordinate gives an-
other condition which still involves both ṽl and ṽz. In order
to obtain a boundary condition for the normal component
only, the incompressibility condition �10� is once more in-
voked. We finally get

�1�
 �2ṽz

�z2 + q2ṽz��
0+

= �2�
 �2ṽz

�z2 + q2ṽz��
0−

. �A6�

Note that the balance of tangential stresses is also relevant
with regard to the normal component of the velocity.

3. Discontinuity of normal stress

The next condition that has to be enforced concerns the
normal-normal stress difference that comes into play when-
ever the interface is bent. Indeed, a deformation of the inter-
face gives rise to normal restoring forces, expressed as the
functional derivative of the Hamiltonian �4�. For small dis-
placements, the forces are small and proportional to h. The
normal stress condition reads, in real space, ��zz�0− − ��zz�0+

=−�H /�h. In terms of the variables 
q ,z ,
�, we have

p̃�0+� − p̃�0−� − 2�1� �ṽz

�z
�

0+
+ 2�2� �ṽz

�z
�

0−
= − Eqh̃�q,
� ,

where we define the energy density Eq=��q2+�−2�. It can be
seen that the normal stress difference at the interface is bal-
anced by interfacial tension and buoyancy forces �due to the
density difference between the two fluids�. This condition
still involves both the normal component of the velocity as
well as the pressure field. To get a relation in terms of ṽz
only, we shall first use Eq. �7� to express the pressure differ-
ence �remember that z0�0�

iq�p̃�0+� − p̃�0−�� = �1�
 �2ṽl

�z2 − q2ṽl��
0+

− �2�
 �2ṽl

�z2 − q2ṽl��
0−

.

Substituting ṽl, for ṽz, thanks to relation �10�, we arrive at the
condition on the third derivative of the velocity

�1�
 �3ṽz

�z3 − 3q2�ṽz

�z
��

0+
− �2�
 �3ṽz

�z3 − 3q2�ṽz

�z
��

0−

= − q2Eqh̃�q,
� . �A7�

APPENDIX B: SOLUTION OF THE STOKES
EQUATIONS

1. Transverse component of the velocity

We begin with Eq. �8� for the transverse component,
which is easier to solve since it does not couple with the
longitudinal and vertical coordinates of the velocity. This
equation can be rewritten as

�2ṽt

�z2 − q2ṽt = −
F̃t

�1q2��z − z0� . �B1�

With the condition that the fluid is at rest at infinity, the
solution is

ṽt�q,z,
� = �Ae−qz for 0 � z0 � z ,

Beqz + Ce−qz for 0 � z � z0,

Deqz for z � 0 � z0.
�

We then need to specify the boundary conditions in order to
determine the four integration constants. The continuity of
the velocity and the balance of tangential stresses at height
z=0 give the conditions �A2� and �A5�. We get another
couple of conditions by invoking the standard continuity
conditions for the Green’s function at the singularity z=z0.
Explicitly, these requirements read

ṽt�q,z0
+,
� = ṽt�q,z0

−,
� , �B2�

� �ṽt

�z
�

z0
+

− � �ṽt

�z
�

z0
−

= −
F̃t

�1q2 . �B3�

Enforcing the boundary conditions �A2�, �A5�, �B2�, and
�B3�, we find the following expression for z�0:

ṽt�q,z,
� =
F̃t

2�1q
�e−q�z−z0� − 
1 − �

1 + �
�e−q�z+z0�� , �B4�

and for z�0

ṽt�q,z,
� =
F̃t

2�2q

 2

1 + �
�e−q�z−z0�. �B5�

The transverse components are then obtained by compari-
son of Eq. �B4� �for z�0� or �B5� �for z�0� with the defi-

nition of the Green’s function ṽt= G̃tlF̃l+ G̃ttF̃t+ G̃tzF̃z. Obvi-

ously, we get G̃tl= G̃tz=0, the only nonzero component being

G̃tt. Note that the transverse component of the velocity is not
affected by the shape of the interface.

2. Normal component of the velocity

a. Differential equation and general solution

A priori, the normal and the longitudinal components of
the velocity are coupled with each other. But, since the rela-
tions �7�, �9�, and �10� relating p̃, ṽl, and ṽz are linear, it is
not difficult to get a single equation for ṽz,

�4ṽz

�z4 − 2q2�2ṽz

�z2 + q4ṽz =
q2F̃z

�1
��z − z0� +

iqF̃l

�1
���z − z0� ,

�B6�

with �� the derivative of the delta function. The solution of
this fourth-order differential equation is then
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ṽz�q,z,
� = ��A + Bz�e−qz for z � z0,

�C + Dz�eqz + �E + Fz�e−qz for z � z0,

�G + Hz�eqz for z � 0.
�

For the sake of simplicity, we shall focus separately on the

situations where �F̃l=0, F̃z�0� and �F̃l�0, F̃z=0�. Accord-
ing to the superposition principle, each solution leads by

identification to the components of the Green tensor G̃zz and

G̃zl, respectively. Obviously, the normal-transverse compo-

nent is identically zero, G̃zt=0.

b. Normal-normal component

We first consider the case where F̃l=0 and F̃z�0. In ad-
dition to the boundary conditions �A3�, �A4�, �A6�, and �A7�,
we have to enforce the usual conditions for the Green’s func-
tion at the singularity position z=z0, namely, the velocity and
its first and its second derivatives are continuous at z=z0.
The only discontinuity comes from the third derivative,

� �3ṽz

�z3 �
z0
+

− � �3ṽz

�z3 �
z0
−

=
q2F̃z

�1
. �B7�

The algebra involved to evaluate the height integration con-
stants is rather lengthy but presents no difficulty. We simply
give the resulting velocity field:

ṽz�q,z,
� =
F̃z

4�1q
��1 + q�z − z0��e−q�z−z0� − 
1 − �

1 + �
��1 + q�z

+ z0� + 2q2zz0�e−q�z+z0�� − 
qh̃�q,
��1 + qz�e−qz

�B8�

for z�0, and

ṽz�q,z,
� =
F̃z

4�2q

 2

1 + �
��1 + q�z0 − z��eq�z−z0�

− 
qh̃�q,
��1 − qz�eqz �B9�

for z�0. The velocity field still depends on the deformation
of the interface, which itself is a function of the velocity
through the closure relation �12�. Evaluating the velocity
�B8� or �B9� at height z=0 and comparing with �12� then
leads to

h̃�q,
� =
1


q + i

�1 + qz0�e−qz0

F̃z

4�̄q
. �B10�

Bringing Eqs. �B8� and �B9� together with Eq. �B10�, we
finally obtain the normal-normal component of the Green’s
function:

G̃zz�q,z,z0,
� =
1

4�1q
��1 + q�z − z0��e−q�z−z0�

− 
1 + q�z + z0� +
2q2zz0

1 + �
�e−q�z+z0��

+
1

4�̄q





 − i
q
�1 + qz��1 + qz0�e−q�z+z0�

�B11�

for z�0, and

G̃zz�q,z,z0,
� =
1

4�2q

 2

1 + �
�q2zz0eq�z−z0�

+
1

4�̄q





 − i
q
�1 − qz��1 + qz0�eq�z−z0�

�B12�

for z�0.

c. Normal-longitudinal component

In order to get the component G̃nl of the Green’s function,

we perform the same analysis expect that we now keep F̃l

�0, whereas we set F̃z=0. This time, the discontinuity im-
posed by �� in Eq. �B6� has an effect on the second deriva-
tive of the velocity at z=z0,

� �2ṽz

�z2 �
z0
+

− � �2ṽz

�z2 �
z0
−

=
iqF̃l

�1
, �B13�

the velocity and its first and it third derivatives being con-
tinuous. The algebra being quite similar to that of the previ-
ous section, we shall skip the details. Once again, the veloc-
ity field depends on the deformation of the interface.
Interestingly, a point force exerted parallel to the surface is
responsible for a normal displacement of the fluid-fluid in-
terface. Evaluating the velocity at height z=0 leads to the
result

h̃�q,
� =
1


 − i
q
qz0e−qz0

F̃l

4�̄q
. �B14�

Bringing everything together, we find the normal-
longitudinal component of the Green’s function

G̃zl�q,z,z0,
� =
i

4�1q
�q�z0 − z�e−q�z−z0�

+ 
1 − �

1 + �
qz − qz0 −

2q2zz0

1 + �
�e−q�z+z0��

+
i

4�̄q





 − i
q
�1 + qz�qz0e−q�z+z0� �B15�

for z�0, and
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G̃zl�q,z,z0,
� = −
i

4�2q

 2

1 + �
�qz�1 − qz0�eq�z−z0�

+
i

4�̄q





 − i
q
�1 − qz�qz0eq�z−z0� �B16�

for z�0.

3. Longitudinal component of the velocity

To obtain the longitudinal component of the velocity,
there is actually no need to solve the corresponding differen-
tial equation �7�. Indeed, from the incompressibility condi-
tion �10�, ṽl is related to ṽz thanks to ṽl= �i /q��ṽz /�z. From

the definition ṽl= G̃llF̃l+ G̃lzF̃z �since, of course, G̃lt=0�, it is
straightforward to get

G̃ll�q,z,z0,
� =
1

4�1q
��1 − q�z − z0��e−q�z−z0�

− 
1 − �

1 + �
�
1 − q�z + z0� +

2q2zz0

1 − �
�e−q�z+z0��

+
1

4�̄q





 − i
q
q2zz0e−q�z+z0� �B17�

for z�0, and

G̃ll�q,z,z0,
� =
1

4�2q

 2

1 + �
��1 + qz��1 − qz0�eq�z−z0�

+
1

4�̄q





 − i
q
q2zz0eq�z−z0� �B18�

for z�0. The longitudinal-normal component G̃lz can be ob-
tained following the same procedure, though it will not be
required here.
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